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How to simulate the quasistationary state
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For a large class of processes with an absorbing state, statistical properties of the surviving sample attain
time-independent values in the quasistation@®® regime. We propose a practical simulation method for
studying quasistationary properties, based on the equation of motion governing the QS distribution. In appli-
cations to the contact process, the method is shown to reproduce exact (fesutie process on a complete
graph and known scaling behavior to high precision. At the critical point, our method is about an order of
magnitude more efficient than conventional simulation.
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[. INTRODUCTION A number of strategies have been devised to circumvent
the difficulties associated with simulating models exhibiting
%bsorbing states. One involves replacing the absorbing state
with a reflecting boundary in configuration spaddZ2]. In
another approach the activity is fixed at a nonzero value, in a

del lation ai=0 individual tinct wh “constant coverage” simulatiofL3] or a “conserved” ver-
models, a popuiation di =1 Individuals goes extinct when g, ¢ the model[14]. If one includes a weak external

the absorbing stat@=0, is reached. Phase transitions to ANsource of activityh, the zero-activity state is no longer ab-

absorbing state in spatially extended systems, exemplified bgorbing, but it is possible to obtain information on critical

the contact p_rocesBl,S], are curre.r_ltly.of great interggt in behavior by analyzing scaling properties las-0 [11]. A
connection with self-organized criticali§f], the transition further possibility is to clone surviving realizations of the

t9 turblljtllenlce[hﬂ, and |S£Uis(,)] 0; unrllversglrlty n nfonequnl[lb- process, enriching the sample to compensate for attrition as
rlum critical phenomengs—24. SUCh Models are requently o ¢ rival probability decayil5]. While all of these ap-

StUd'ed. using deterministic ”?eaf_"f'e'd equations, IVlomeproaches are useful, none affords direct, unbiased sampling
Carlo simulation, and renormalization group analyses. of the QS state of the original process

Itis desire}ble to de\{elop additional _methods for studying For models without spatial structure, such as uniformly
processes W.'th absqrbmg states..ln th|s.work we stqdy mOddistributed populations or well stirred chemical reactors, the
_els_ t_hat "?‘dm'.t an actlv@c_)nabsorblngstatlongry state in the full QS distribution can be found from the master equation
infinite-size limit, but which always, for a finite system size, via recurrence relations or an iterative schefé,17. In ’
end up in the absorbing state. Theasistationar{QS) dis- models with spatial structure, typified by nearest-neighbor

tribution for such a system provides a wealth of ImcorrT“"moninteractions on a lattice, mean-field-like approximations to

about its behaviorn fact, simulations of “stationary” prop- the QS distribution have been derived, but descriptions in
erties of lattice models with an absorbing state actually stud)( ’

S : . . erms of one or a few random variables cannot capture criti-
the quasistationary regime, given that _the only true stationaryy| flyctuations. The simulation method developed here does
state for a finite system is the absorbing ¢ne.

| deular. it Id b luable o h imulati not suffer from this limitation. It provides a sampling of the
n particular, 1t would be valuable 1o have a simuiation QS probability distribution just as conventional Monte Carlo
method that yields quasistationary properties directly. Cur

f ilabl thods invol hat licat simulation does for the equilibrium distribution. In the fol-
rently avajlable metnods Involve a somewnat compiicate wing section we discuss the basis of our method. Then in
procedure for determining QS properties: a large sample

! R ec. lll we show how it may be applied to the contact pro-
independent realizations are performed, and thg refgrof cess on a complete graph, for which examtmerica) results
some property(for example, the order parametés evalu-

= Y . . are available for QS properties. Results for the contact pro-
ated over the surviving realizations at tiheAt short times QS prop P

times ¢(t) exhibits a transient as it relaxes toward the stciﬁzisngg ii rslr;%.a\;.e presented in Sec. IV. We summatize our
regime; at long times it fluctuates wildly as the surviving
sample decays. Normally one is able to identify an interme-
diate regime free of transients and with limited fluctuations,
which can be used to estimate the QS value¢ofThis We begin by reviewing the definition of the quasistation-
method requires careful scrutiny of the data and is not alwaygyy distribution. Consider a continuous-time Markov process
free of ambiguity[11]. X, taking valuesn=0,1,2...., S, with the staten=0 absorb-
ing. We usep,(t) to denote the probability thaf,=n, given
some initial state X,. The survival probability Pg(t)
* Electronic address: mancebo@fisica.ufmg.br =>,=1Pn(1) is the probability that the process has not become
"Electronic address: dickman@fisica.ufmg.br trapped in the absorbing state up to tim&Ve suppose that

Stochastic processes with an absorbing state arise fr
guently in statistical physidsl,2], epidemiology{3], and re-
lated fields. In autocatalytic process@s lasers, chemical
reactions, or surface catalysis, for exampbnd population
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ast— o the p,, normalized by the survival probabilify(t),  figurations with the current one. In this way the distribution
attain a time-independent form. The quasistationary distribufor the process; (and the sample drawn from),itwill con-

tion p,, is then defined via verge to the QS distributiofi.e., the stationary solution of
Eg. (3)] at long times. Summarizing, the simulation process
Pn= “mpn_(t) (n=1), (1) X; has the same dynamics Xg except that when a transi-
t— Py(t) tion to the absorbing state is imminen{, is placed in a

nonabsorbing state, selected at random from a sample over

with pp=0. The QS distribution is normalized so the history of the realization. In effect, the nonlinear term in

> Ph=1. 2) Eq. (3) is represented asrmemoryin the simulation.
n=1
We now discuss the theoretical basis for our simulation 1l1l. CONTACT PROCESS ON A COMPLETE GRAPH

method. The QS distribution is the stationary solution to the
following equation of motiorf16] (for n> 0):

d
%:_WnQn"'rn"'qun! (3)

To explain how our method works in practice, we detail
its application to thesontact proces$CP) [4,5,8. In the CP,
each sitd of a lattice is either occupieldr;(t)=1] or vacant
[o(t)=0]. Transitions fromz;=1 to 0 occur at a rate of unity,
independent of the neighboring sites. The reverse transition

wherew,=2\Wn,, is the total rate of transitions out of state 4 gnly occur if at least one neighbor is occupied: the tran-
N, andr, =W, rGr, is the flux of probability into this state.  tion from 0;=0 to 1 occurs at ratar, wherer is the frac-

To see this, consider the master equafigq. (3) without the o of nearest neighbors of sitethat are occupied; thus the
final term] in the QS regime. Substituting,(t)=P(t)Pn, and  gtate ;=0 for all i is absorbing(\ is a control parameter
noting that in the QS regimePy/dt=—ro=-PZWomPm We  governing the rate of spread of activjtfhe order parameter
see that the right-hand side of E) is identically zero if p is the fraction of occupied sites.

0n=pn for n=1. The final term in Eq(3) represents a redis- To begin we study the contact process orcamplete
trlbuthn of thel probabllltyro (transferred to the absorplng graph (CPCG, in which the rate for a vacant site to turn
state in the original master equatjprio the nonabsorbing  occupied isk times the fraction of all sites that are occupied,
subspace. Each nonabsorbing state receives a share equatdgher than the fraction of nearest neighbors. Since each site
its probability. _ o _ interacts equally with all others, all pairs of sites are neigh-
_ Although Eq.(3) is not a master equatidit is nonlinear  pors, defining a complete graptiThe critical value in this

in the pro_bab|I|t|esqn), it does suggest a simulation scheme case s\ =1; the stationary value gb is zero forh <\..)

for sampling the QS distribution. In a Monte Carlo simula- The state of the process is specified by a single variable

tion one generates a set of realizations of a stochastic prgne number of occupied sites. This is a one-step process with
cess. In what follows we call a simulation of the original ngnzero transition rates

processX; (possessing an absorbing sjateconventional

simulation. Our goal is to define a related proc¥sswhose Wi-1n=n, (4)
stationaryprobability distribution is thejuasistationarydis-

tribution of X;. (Note that in order to have a nontrivial sta- n

tionary distribution,xf cannot possess an absorbing sjate. Wn+1,n=7‘[(|- -n) (5)

The probability distribution ofXI is governed by Eq(3),

which implies that fom>0 (i.e., away from the absorbing on a graph oL sites. In Ref[16] the exact QS distribution
stat, the evolution ofX; is identical to that o,. [Since Eq.  for the CPCG is obtained via a set of recurrence relations.
(3) holds forn>0, the procesS(: must begin in a nonab- We simulate the quasistationary state of the CPCG hy
sorbing statd.When X, enters the absorbing state, however,realizing the process corresponding to the transition rates of
X! instead jumps to a nonabsorbing one, and then resumes #&#1s.(4) and(5) and maintaining a list ok = 10" states. Each
“usual” evolution (with the same transition probabilities as time a(nonabsorbingstate is visited, we update the list with

Xy, until such time as another visit to the absorbing state igrobability yAt whereAt=1/w,, is the mean duration of this
imminent. state. Whenever a transition to the absorbing stated) is

A subtle aspect of Eq3) is that the distributiom, is used  generated, we instead select a state from the list. The results
to determine the value ok, when X; visits the absorbing for a system of 100 sites, using=0.5, are shown in Fig. 1,
state. Although one has no prior knowledge gpf (or its illustrating excellent agreement with the exact QS distribu-
long-time limit, the QS distributiom,), one can, in a simu- tion obtained in Ref[16]. The simulation result is in good
lation, use the histor; (0<s=<t) up to timet, to estimate agreement with the exact result even fox0.1, deep in the
the q,,. This is done by savingand periodically updatinga subcr_itical regime, in which the lifetime of the original pro-
sampleny,n,, ..., ny of the states visited!f the state space Cess is very short.
is characterized by a small set of variables, one may instead
accumulate a histogratd(n) giving the time spent in state
n.] As the evolution progresse):é; will visit states according
to the QS distribution. We therefore update the sample We turn to the one-dimensional contact procéss the
{ny,n,,...,nyu} by periodically replacing one of these con- model defined in Sec. Il on a ring df sites. Although no

IV. CONTACT PROCESS ON A RING
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FIG. 1. QS distributions via recurrence relatiofs®lid lines A

and QS simulatioiisymbolg for the CP on a complete graph of 100

sites.A=0.5, 1.0, and 1.5left to right). FIG. 2. Quasistationary density in the one-dimensional CP.

Open symbols, QS simulatioh,=20; filled symbols, QS simula-
exact results are available, the model has been studied intefion, L=200. Solid lines represent results of conventional
sively via series expansion and Monte Carlo simulation. Theimulations.
model has attracted much interest as a prototype of a non-
equiilibrium critical point, a simple representative of the di- therefore remains on the list for a mean time Mf pe,.
rected percolatiofDP) universality class. Since its scaling (Values ofp,, in the range 1-1072 are used; the results
properties have been discussed extensil@h10 we review  appear to be insensitive to the precise choice.
them only briefly. The best estimate for the critical point in  Figure 2 shows that our method reproduces the order pa-
one dimension i3.=3.297 84820), as determined via series rameterp obtained via conventional simulations. In Fig. 3
analysis[18]. As the critical point is approached, the corre-the QS and conventional results for the moment ratio
lation length¢ and correlation timer diverge, followingé  =(p?)/{p)? are compared. As discussed in Rdf6], the life-
«[A[™+ and 7o [A[™, whereA=A—)\ is the distance from time of the QS state is given by=1/p,. The lifetime ob-
the critical point. The order parametére., the fraction of tained in QS simulations compares well with the lifetime
active sitep scales agA” for A>0. In simulations it is  obtained via conventional simulatigusing Ps~ exp(—t/7)],
most convenient to study the size dependence of the lifetimgs shown in Fig. 4. Detailed comparison shows that there is
and the order parameter &{. The expected finite-size scal- ng significant difference between the QS and conventional
ing behaviors argocL™#"1 and r«<L""+. In addition, the  gimulation results. Foh <3, conventional simulations are
ratio m=(p®)/(p)* attains a universal valugharacteristic of sybject to relatively large uncertainties, since almost all real-
DPin 1+1 dimensionsat the critical point. This quantity is izations become trapped in the absorbing state before the
analogous to Binder’s reduced fourth cumul&h®] at an  quasistationary regime is attained. At the critical point, qua-
equilibrium critical point: the curvesn(\,L) for variousL  sistationary simulations require about an order of magnitude
cross neark.. (Since the crossings approadh asL in-  less CPU time than conventional simulations, to achieve re-
creases, analysis @h represents an alternative method for sults of the same precisiofBelow A the savings are even
determining\,, as discussed if20]. Here however we sim-
ply use the series result far,.) 1.4

In the QS simulations we use a list siké=(2x 10°)—
10%, depending on the lattice size. The process is simulated [
in runs of 16 or more time steps. As is usual, annihilation 1.3
events are chosen with probability (14\) and creation
events with probabilit\/ (1 +\). A site is chosen from a list I
of currently occupied sites, and, in the case of annihilation, is E 1.2
vacated, while, for creation events, a nearest-neighbor site is
selected at random and, if it is currently vacant, it becomes
occupied. The time increment associated with each event is
At=1/Nyc WhereN, is the number of occupied sites just
prior to the attempted transitidi8].

In the initial phase of the evolution, the list of saved con-

1.1

i i i iHm 1.0

flgu_ratlc_)ns is augm.ented.whe_never the timecreases by 1, 20 25 30 35 40 45 50

until a list of M configurations is accumulated. From then on, A

we update the listreplacing a randomly selected entry with

the current configuration with a certain probabilityp,e, FIG. 3. Quasistationary moment rafit in the one-dimensional

whenevert advances by one unit. A given configuration CP. Symbols as in Fig. 2.
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FIG. 4. Quasistationary lifetime in the one-dimensional CP. FIG. 5. Quasistationary lifetimevs system sizé in the critical
Symbols as in Fig. 2. one-dimensional CP. The inset shows the deviation from the pure

power law, 7o L1-5815(open symbols and from the power law with
greater; well above the two methods are equally efficient, a correction to scaling term decaying &s%'° (filed symbols,
since visits to the absorbing state are extremely rare. shifted vertically for visibility.

As a further application of our method we study the criti-
cal CP(\.=3.297 848 on rings of 20,40,80,.,1280 sites. scaling for smaller system sizes. Allowing a correction to
We perform 50 realizations, each extending ts 5° time  scaling term proportional th "7 as before, we obtain the
steps. Results from the first 1@ime steps(2x 10" for L best fit using
=1280 are discarded from the averages; convergence to the
QS state occurs on a considerably shorter timescale. The B
studies reported here employed a list sMe2000 and re- In p=-0.2528 InL + —— + const (7)
placement probabilityp,,=0.001. In studies of the critical L
process on a lattice of 320 sites, we found no significant | _
dependence of the results on varyipg, between 0.01 and with B=0.05110). Compared with the standard value
0.001, or varyingM between 100 and 2000. A small but B/v.=0.252 085) [21], our result overestimates the expo-
significant decreas@®.2%) in the value for the order param- hent ratio by 0.81)%. [A simple power-law fit to the data for
eter appears wheMl is reduced to 20. L=20-1280 yields3/v, =0.25172).]

Our results confirm the estimate for the critical moment Summarizing, the QS simulation method yields results
ratio m,=1.17362) obtained in Ref[20] from simulations  fully consistent with conventional simulation, and with es-
of systems of up to 320 sites. Based on our datalfor tablished scaling properties, when applied to the contact pro-
=80-1280 we estimate,=1.17361). Our estimates for the

lifetime (Fig. 5 follow (\¢,L)~L"/"1 to good precision; a 06—
fit to the data forL=320, 640, and 1280 yields;/v, 0.018
=1.581%10). For smaller sizes there are systematic correc- -08 11
tions to this pure power law, as shown in the inset of Fig. 5. ]
Observing that the magnitude of the correction decays pro- 101 14
portional toL™%75 we fit (using a least-squares procedure
the following expression to the data fbe=20-1280: 2L 5 -
£
In 7= L In L+Oi75+ const. (6) A4r j
v, L
16 f ]

The exponent ratio and the constanare treated as adjust-

able parameters, yieldindh=0.204) and confirming the 1.8
value quoted above for,/v,. The latter is consistent with
the standard value of 1.58(F (from series analysi®1]), to

within a statistical uncertainty of 0.06%. FIG. 6. Quasistationary order parametevs system sizé in

Similarly, the QS simulation data for the order parameterine critical one-dimensional CP. The inset shows the deviation from
p(\¢,L) follow the power-lawp~L"#"+ to good precision  the pure power lawse L-92528(open symbolg and from the power
(Fig. 6); the data for the three largest sizes furnj8hv,  law with a correction to scaling term decayinglad-’> (filled sym-
=0.25283). Once again there are systematic corrections tdols, shifted vertically for visibility.

InL
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cess on a ring. Exponent and moment ratio values are repro- V. SUMMARY
duced to three significant figures or better.

It is interesting to compare the QS distribution with that We have devised and tested a simulation method for qua-
obtained using a reflecting boundaryrat0, as was used in Sistationary properties of models with an absorbing state.
[12]. In the case of the CP on a complete graph the stationaryhe method is easy to implement, and yields reliable results
distribution with a reflecting boundafRB) is given in[16],  in a fraction of the time required for conventional simula-
where it is called the “pseudostationary” distribution. Wetions in the critical regime, of prime interest in the context
find that for large systems, in the active ph&savell above  Of scaling and universality. It also opens the possibility of
\o) the RB and QS distributions are essentially the same, bufivestigating QS properties in the subcritical regime, which
that nearer(and below the transition the RB distribution is essentially inaccessible to conventional simulations. We
yields a much higher probability for states near1 than expect the method to be applicable to many problems cur-
does the QS. The reflecting boundary is equivalent to dently under investigation, such as branching-annihilating
modified process(; which, when a visit to the absorbing random walks, conserved sandpiles, and stochastic popula-
state is imminent, is always reset to the previous configuration models.
tion. Since the latter is but one step removed from the ab-
sorbing state, the buildup of probability in the vicinity is not
surprising. In general, we expect the QS and RB distributions ACKNOWLEDGMENT
to be in good accord when the lifetime of the process is
reasonably long, since this implies a small QS probability in  This work was supported by CNPq and FAPEMIG,
the vicinity of the absorbing state. Brazil.
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