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For a large class of processes with an absorbing state, statistical properties of the surviving sample attain
time-independent values in the quasistationarysQSd regime. We propose a practical simulation method for
studying quasistationary properties, based on the equation of motion governing the QS distribution. In appli-
cations to the contact process, the method is shown to reproduce exact resultssfor the process on a complete
graphd and known scaling behavior to high precision. At the critical point, our method is about an order of
magnitude more efficient than conventional simulation.
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I. INTRODUCTION

Stochastic processes with an absorbing state arise fre-
quently in statistical physicsf1,2g, epidemiologyf3g, and re-
lated fields. In autocatalytic processessin lasers, chemical
reactions, or surface catalysis, for exampled, and population
models, a population ofnù0 individuals goes extinct when
the absorbing state,n=0, is reached. Phase transitions to an
absorbing state in spatially extended systems, exemplified by
the contact processf4,5g, are currently of great interest in
connection with self-organized criticalityf6g, the transition
to turbulencef7g, and issues of universality in nonequilib-
rium critical phenomenaf8–10g. Such models are frequently
studied using deterministic mean-field equations, Monte
Carlo simulation, and renormalization group analyses.

It is desirable to develop additional methods for studying
processes with absorbing states. In this work we study mod-
els that admit an activesnonabsorbingd stationary state in the
infinite-size limit, but which always, for a finite system size,
end up in the absorbing state. ThequasistationarysQSd dis-
tribution for such a system provides a wealth of information
about its behavior.sIn fact, simulations of “stationary” prop-
erties of lattice models with an absorbing state actually study
the quasistationary regime, given that the only true stationary
state for a finite system is the absorbing one.d

In particular, it would be valuable to have a simulation
method that yields quasistationary properties directly. Cur-
rently available methods involve a somewhat complicated
procedure for determining QS properties: a large sample of
independent realizations are performed, and the meanfstd of
some propertysfor example, the order parameterd is evalu-
ated over the surviving realizations at timet. At short times
times fstd exhibits a transient as it relaxes toward the QS
regime; at long times it fluctuates wildly as the surviving
sample decays. Normally one is able to identify an interme-
diate regime free of transients and with limited fluctuations,
which can be used to estimate the QS value off. This
method requires careful scrutiny of the data and is not always
free of ambiguityf11g.

A number of strategies have been devised to circumvent
the difficulties associated with simulating models exhibiting
absorbing states. One involves replacing the absorbing state
with a reflecting boundary in configuration spacef12g. In
another approach the activity is fixed at a nonzero value, in a
“constant coverage” simulationf13g or a “conserved” ver-
sion of the modelf14g. If one includes a weak external
source of activity,h, the zero-activity state is no longer ab-
sorbing, but it is possible to obtain information on critical
behavior by analyzing scaling properties ash→0 f11g. A
further possibility is to clone surviving realizations of the
process, enriching the sample to compensate for attrition as
the survival probability decaysf15g. While all of these ap-
proaches are useful, none affords direct, unbiased sampling
of the QS state of the original process.

For models without spatial structure, such as uniformly
distributed populations or well stirred chemical reactors, the
full QS distribution can be found from the master equation,
via recurrence relations or an iterative schemef16,17g. In
models with spatial structure, typified by nearest-neighbor
interactions on a lattice, mean-field-like approximations to
the QS distribution have been derived, but descriptions in
terms of one or a few random variables cannot capture criti-
cal fluctuations. The simulation method developed here does
not suffer from this limitation. It provides a sampling of the
QS probability distribution just as conventional Monte Carlo
simulation does for the equilibrium distribution. In the fol-
lowing section we discuss the basis of our method. Then in
Sec. III we show how it may be applied to the contact pro-
cess on a complete graph, for which exactsnumericald results
are available for QS properties. Results for the contact pro-
cess on a ring are presented in Sec. IV. We summarize our
findings in Sec. V.

II. BACKGROUND

We begin by reviewing the definition of the quasistation-
ary distribution. Consider a continuous-time Markov process
Xt taking valuesn=0,1,2,… , S, with the staten=0 absorb-
ing. We usepnstd to denote the probability thatXt=n, given
some initial state X0. The survival probability Psstd
=onù1pnstd is the probability that the process has not become
trapped in the absorbing state up to timet. We suppose that
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ast→` the pn, normalized by the survival probabilityPsstd,
attain a time-independent form. The quasistationary distribu-
tion p̄n is then defined via

p̄n = lim
t→`

pnstd
Psstd

sn ù 1d, s1d

with p̄0;0. The QS distribution is normalized so

o
nù1

p̄n = 1. s2d

We now discuss the theoretical basis for our simulation
method. The QS distribution is the stationary solution to the
following equation of motionf16g sfor n.0d:

dqn

dt
= − wnqn + rn + r0qn, s3d

wherewn=omwm,n is the total rate of transitions out of state
n, andrn=omwn,mqm is the flux of probability into this state.
To see this, consider the master equationfEq. s3d without the
final termg in the QS regime. Substitutingqnstd=Psstdp̄n, and
noting that in the QS regimedPs/dt=−r̄0=−Psomw0,mp̄m, we
see that the right-hand side of Eq.s3d is identically zero if
qn= p̄n for nù1. The final term in Eq.s3d represents a redis-
tribution of the probabilityr0 stransferred to the absorbing
state in the original master equationd, to the nonabsorbing
subspace. Each nonabsorbing state receives a share equal to
its probability.

Although Eq.s3d is not a master equationsit is nonlinear
in the probabilitiesqnd, it does suggest a simulation scheme
for sampling the QS distribution. In a Monte Carlo simula-
tion one generates a set of realizations of a stochastic pro-
cess. In what follows we call a simulation of the original
processXt spossessing an absorbing stated a conventional
simulation. Our goal is to define a related processXt

* , whose
stationaryprobability distribution is thequasistationarydis-
tribution of Xt. sNote that in order to have a nontrivial sta-
tionary distribution,Xt

* cannot possess an absorbing state.d
The probability distribution ofXt

* is governed by Eq.s3d,
which implies that forn.0 si.e., away from the absorbing
stated, the evolution ofXt

* is identical to that ofXt. fSince Eq.
s3d holds for n.0, the processXt

* must begin in a nonab-
sorbing state.g WhenXt enters the absorbing state, however,
Xt

* instead jumps to a nonabsorbing one, and then resumes its
“usual” evolution swith the same transition probabilities as
Xtd, until such time as another visit to the absorbing state is
imminent.

A subtle aspect of Eq.s3d is that the distributionqn is used
to determine the value ofXt

* when Xt visits the absorbing
state. Although one has no prior knowledge ofqn sor its
long-time limit, the QS distributionp̄nd, one can, in a simu-
lation, use the historyXs

* s0,sø td up to timet, to estimate
the qn. This is done by savingsand periodically updatingd a
samplen1,n2,… , nM of the states visited.fIf the state space
is characterized by a small set of variables, one may instead
accumulate a histogramHsnd giving the time spent in state
n.g As the evolution progresses,Xs

* will visit states according
to the QS distribution. We therefore update the sample
hn1,n2,… ,nMj by periodically replacing one of these con-

figurations with the current one. In this way the distribution
for the processXt

* sand the sample drawn from itd, will con-
verge to the QS distributionfi.e., the stationary solution of
Eq. s3dg at long times. Summarizing, the simulation process
Xt

* has the same dynamics asXt, except that when a transi-
tion to the absorbing state is imminent,Xt

* is placed in a
nonabsorbing state, selected at random from a sample over
the history of the realization. In effect, the nonlinear term in
Eq. s3d is represented as amemoryin the simulation.

III. CONTACT PROCESS ON A COMPLETE GRAPH

To explain how our method works in practice, we detail
its application to thecontact processsCPd f4,5,8g. In the CP,
each sitei of a lattice is either occupiedfsistd=1g or vacant
fsistd=0g. Transitions fromsi =1 to 0 occur at a rate of unity,
independent of the neighboring sites. The reverse transition
can only occur if at least one neighbor is occupied: the tran-
sition from si =0 to 1 occurs at ratelr, wherer is the frac-
tion of nearest neighbors of sitei that are occupied; thus the
statesi =0 for all i is absorbing.sl is a control parameter
governing the rate of spread of activity.d The order parameter
r is the fraction of occupied sites.

To begin we study the contact process on acomplete
graph sCPCGd, in which the rate for a vacant site to turn
occupied isl times the fraction of all sites that are occupied,
rather than the fraction of nearest neighbors. Since each site
interacts equally with all others, all pairs of sites are neigh-
bors, defining a complete graph.sThe critical value in this
case islc=1; the stationary value ofr is zero forl,lc.d
The state of the process is specified by a single variablen:
the number of occupied sites. This is a one-step process with
nonzero transition rates

Wn−1,n = n, s4d

Wn+1,n = l
n

L
sL − nd s5d

on a graph ofL sites. In Ref.f16g the exact QS distribution
for the CPCG is obtained via a set of recurrence relations.

We simulate the quasistationary state of the CPCG by
realizing the process corresponding to the transition rates of
Eqs.s4d ands5d and maintaining a list ofM =104 states. Each
time asnonabsorbingd state is visited, we update the list with
probability gDt whereDt=1/wn is the mean duration of this
state. Whenever a transition to the absorbing statesn=0d is
generated, we instead select a state from the list. The results
for a system of 100 sites, usingg=0.5, are shown in Fig. 1,
illustrating excellent agreement with the exact QS distribu-
tion obtained in Ref.f16g. The simulation result is in good
agreement with the exact result even forl=0.1, deep in the
subcritical regime, in which the lifetime of the original pro-
cess is very short.

IV. CONTACT PROCESS ON A RING

We turn to the one-dimensional contact processsi.e, the
model defined in Sec. III on a ring ofL sitesd. Although no
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exact results are available, the model has been studied inten-
sively via series expansion and Monte Carlo simulation. The
model has attracted much interest as a prototype of a non-
equiilibrium critical point, a simple representative of the di-
rected percolationsDPd universality class. Since its scaling
properties have been discussed extensivelyf8–10g we review
them only briefly. The best estimate for the critical point in
one dimension islc=3.297 848s20d, as determined via series
analysisf18g. As the critical point is approached, the corre-
lation lengthj and correlation timet diverge, followingj
~ uDu−n' and t~ uDu−ni, whereD=l−lc is the distance from
the critical point. The order parametersi.e., the fraction of
active sitesd scales asr~Db for D.0. In simulations it is
most convenient to study the size dependence of the lifetime
and the order parameter atlc. The expected finite-size scal-
ing behaviors arer~L−b/n' and t~Lni/n'. In addition, the
ratio m=kr2l / krl2 attains a universal valuescharacteristic of
DP in 1+1 dimensionsd at the critical point. This quantity is
analogous to Binder’s reduced fourth cumulantf19g at an
equilibrium critical point: the curvesmsl ,Ld for variousL
cross nearlc. sSince the crossings approachlc as L in-
creases, analysis ofm represents an alternative method for
determininglc, as discussed inf20g. Here however we sim-
ply use the series result forlc.d

In the QS simulations we use a list sizeM =s23103d–
104, depending on the lattice size. The process is simulated
in runs of 108 or more time steps. As is usual, annihilation
events are chosen with probability 1/s1+ld and creation
events with probabilityl / s1+ld. A site is chosen from a list
of currently occupied sites, and, in the case of annihilation, is
vacated, while, for creation events, a nearest-neighbor site is
selected at random and, if it is currently vacant, it becomes
occupied. The time increment associated with each event is
Dt=1/Nocc, whereNocc is the number of occupied sites just
prior to the attempted transitionf8g.

In the initial phase of the evolution, the list of saved con-
figurations is augmented whenever the timet increases by 1,
until a list of M configurations is accumulated. From then on,
we update the listsreplacing a randomly selected entry with
the current configurationd, with a certain probabilityprep,
whenever t advances by one unit. A given configuration

therefore remains on the list for a mean time ofM /prep.
sValues ofprep in the range 10−3–10−2 are used; the results
appear to be insensitive to the precise choice.d

Figure 2 shows that our method reproduces the order pa-
rameterr obtained via conventional simulations. In Fig. 3
the QS and conventional results for the moment ratiom
=kr2l / krl2 are compared. As discussed in Ref.f16g, the life-
time of the QS state is given byt=1/p̄1. The lifetime ob-
tained in QS simulations compares well with the lifetime
obtained via conventional simulationfusingPs,exps−t /tdg,
as shown in Fig. 4. Detailed comparison shows that there is
no significant difference between the QS and conventional
simulation results. Forl,3, conventional simulations are
subject to relatively large uncertainties, since almost all real-
izations become trapped in the absorbing state before the
quasistationary regime is attained. At the critical point, qua-
sistationary simulations require about an order of magnitude
less CPU time than conventional simulations, to achieve re-
sults of the same precision.sBelow lc the savings are even

FIG. 1. QS distributions via recurrence relationsssolid linesd
and QS simulationssymbolsd for the CP on a complete graph of 100
sites.l=0.5, 1.0, and 1.5sleft to rightd. FIG. 2. Quasistationary densityr in the one-dimensional CP.

Open symbols, QS simulation,L=20; filled symbols, QS simula-
tion, L=200. Solid lines represent results of conventional
simulations.

FIG. 3. Quasistationary moment ratioM in the one-dimensional
CP. Symbols as in Fig. 2.
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greater; well abovelc the two methods are equally efficient,
since visits to the absorbing state are extremely rare.d

As a further application of our method we study the criti-
cal CP slc=3.297 848d on rings of 20,40,80,…,1280 sites.
We perform 50 realizations, each extending to 53108 time
steps. Results from the first 107 time stepss23107 for L
=1280d are discarded from the averages; convergence to the
QS state occurs on a considerably shorter timescale. The
studies reported here employed a list sizeM =2000 and re-
placement probabilityprep=0.001. In studies of the critical
process on a lattice of 320 sites, we found no significant
dependence of the results on varyingprep between 0.01 and
0.001, or varyingM between 100 and 2000. A small but
significant decreases0.2%d in the value for the order param-
eter appears whenM is reduced to 20.

Our results confirm the estimate for the critical moment
ratio mc=1.1736s2d obtained in Ref.f20g from simulations
of systems of up to 320 sites. Based on our data forL
=80–1280 we estimatemc=1.1736s1d. Our estimates for the
lifetime sFig. 5d follow tslc,Ld,Lni/n' to good precision; a
fit to the data for L=320, 640, and 1280 yieldsni /n'

=1.5815s10d. For smaller sizes there are systematic correc-
tions to this pure power law, as shown in the inset of Fig. 5.
Observing that the magnitude of the correction decays pro-
portional toL−0.75, we fit susing a least-squares procedured,
the following expression to the data forL=20–1280:

ln t =
ni

n'

ln L +
A

L0.75 + const. s6d

The exponent ratio and the constantA are treated as adjust-
able parameters, yieldingA=0.20s4d and confirming the
value quoted above forni /n'. The latter is consistent with
the standard value of 1.5807s1d sfrom series analysisf21gd, to
within a statistical uncertainty of 0.06%.

Similarly, the QS simulation data for the order parameter
rslc,Ld follow the power-lawr,L−b/n' to good precision
sFig. 6d; the data for the three largest sizes furnishb /n'

=0.2528s3d. Once again there are systematic corrections to

scaling for smaller system sizes. Allowing a correction to
scaling term proportional toL−0.75 as before, we obtain the
best fit using

ln r = − 0.2528 lnL +
B

L0.75 + const s7d

with B=0.051s10d. Compared with the standard value
b /n'=0.252 08s5d f21g, our result overestimates the expo-
nent ratio by 0.3s1d%. fA simple power-law fit to the data for
L=20–1280 yieldsb /n'=0.2517s2d.g

Summarizing, the QS simulation method yields results
fully consistent with conventional simulation, and with es-
tablished scaling properties, when applied to the contact pro-

FIG. 4. Quasistationary lifetimet in the one-dimensional CP.
Symbols as in Fig. 2.

FIG. 5. Quasistationary lifetimet vs system sizeL in the critical
one-dimensional CP. The inset shows the deviation from the pure
power law,t~L1.5815sopen symbolsd, and from the power law with
a correction to scaling term decaying asL−0.75 sfilled symbols,
shifted vertically for visibilityd.

FIG. 6. Quasistationary order parameterr vs system sizeL in
the critical one-dimensional CP. The inset shows the deviation from
the pure power law,t~L−0.2528sopen symbolsd, and from the power
law with a correction to scaling term decaying asL−0.75 sfilled sym-
bols, shifted vertically for visibilityd.
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cess on a ring. Exponent and moment ratio values are repro-
duced to three significant figures or better.

It is interesting to compare the QS distribution with that
obtained using a reflecting boundary atn=0, as was used in
f12g. In the case of the CP on a complete graph the stationary
distribution with a reflecting boundarysRBd is given inf16g,
where it is called the “pseudostationary” distribution. We
find that for large systems, in the active phasesl well above
lcd the RB and QS distributions are essentially the same, but
that nearersand belowd the transition the RB distribution
yields a much higher probability for states nearn=1 than
does the QS. The reflecting boundary is equivalent to a
modified processXt

* which, when a visit to the absorbing
state is imminent, is always reset to the previous configura-
tion. Since the latter is but one step removed from the ab-
sorbing state, the buildup of probability in the vicinity is not
surprising. In general, we expect the QS and RB distributions
to be in good accord when the lifetime of the process is
reasonably long, since this implies a small QS probability in
the vicinity of the absorbing state.

V. SUMMARY

We have devised and tested a simulation method for qua-
sistationary properties of models with an absorbing state.
The method is easy to implement, and yields reliable results
in a fraction of the time required for conventional simula-
tions in the critical regime, of prime interest in the context
of scaling and universality. It also opens the possibility of
investigating QS properties in the subcritical regime, which
is essentially inaccessible to conventional simulations. We
expect the method to be applicable to many problems cur-
rently under investigation, such as branching-annihilating
random walks, conserved sandpiles, and stochastic popula-
tion models.
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